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Kit Fine (2005) shows the consistency of an impredicative class theory. He constructs

models that extend the cumulative hierarchy; their theories, however, not only imply

the existence of a universal class but are closed under the Boolean operations (union,

complementation etc.) in general.

If this was not sufficient to attract attention, Fine also bases his construction on a novel

analysis of the set-theoretic paradoxes. In the present paper, I elaborate on his ideas.

Fine’s membership relation, I argue, is grounded in ordinary set-theoretic elementhood.

The paper is structured as follows. First, I explain Fine’s ideas in informal terms (§1.1).

Section 1.2 presents his model-theoretic construction as well as the class-theoretic axioms

that it validates. Along the way, I will fill minor gaps in Fine’s own presentation (§1.2.3).

Then, I discuss in more detail Fine’s underlying account of well-founded definitions

(§2.1). I argue that it needs be supplemented by an account of grounded membership. I

outline the relevant notion of groundedness and develop a formal definition (§3). Finally,

I show that Fine’s class-membership is indeed grounded in set-theoretic elementhood in

the precise sense of the definition proposed.

1. Fine’s Theory of Classes

1.1. Philosophical Motivation

Fine’s starting point is a shift in perspective: it is not the universe that is extended —

all objects are given at the outset of the construction. Instead, the membership relation
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is developed in a step by step manner, whereby the members of more and more classes

are ‘revealed’.

To motivate this unusual order of definition, Fine invites the reader to think of classes

as boxes [Fine, 2005, p. 548]. As long as the lid is closed, the members are hidden. But

the containers may be opened, or made transparent, and their members be identified.

In this picture, it seems natural that the classes are given first, if only closed, and the

membership relation is developed later.

As Fine does, let me first describe his construction by means of a little story. Imagine

a dialogue between God and archangel Gabriel. Both Gabriel and God know all proper

classes but only God knows their members. Now assume that they engage in a question-

answer game in the course of which God opens more and more of the boxes, that stand

for to the proper classes.

It is how God opens the boxes that illustrates a central feature of Fine’s construction.

She does not take a box and opens it — rather, Gabriel presents to God some things

and then God opens the box that they are in. But how does Gabriel identify these

things? Since God and Gabriel are just about to determine its content, these things

cannot be referred to as what is in the box. Instead, Gabriel uses a concept1 to specify

the collection of things that it is true of.

For example, when Gabriel comes up with a concept, say that of not being the number

4, God opens one of the boxes, namely that box which contains everything that is not

4. This is how Gabriel gets to know the complement of 4, which is a proper class.

In effect, the classes of Fine’s theory coincide with predicate-extensions. The notion

of class that drives his construction is what at the end of the paper he calls the ‘logical

conception’ [Fine, 2005, p. 568]. That is, Fine’s classes derive from concepts: the

members of any class are just those which satisfy a certain condition.

In view of this, the question of paradox naturally becomes pressing. As the failure of

naive set theory and Frege’s Grundgesetze show, concepts must not carelessly be mapped

into the first order domain. However, Fine’s proposes a novel and elegant solution.

Traditionally, the class-theoretic antinomies have been blamed on naive comprehen-

sion. Fine suggests a different analysis. Below, I will discuss his motivation in more

detail (§2.1). For the time being it suffices to point out that Fine’s treatment of the

paradoxes is based on the new perspective he adopts, the ‘reversal in the roles of the

1Fine himself speaks of ‘conditions’.
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predicate of membership and the ontology of sets’ (op. cit.). If the membership relation

is not any longer assumed to be unequivocal and given at the outset but on the contrary

seen as the result of a step-by-step construction, the heedless use of naive membership

may be seen as the culprit.

Using Fine’s picture again, in the beginning Gabriel can only present to God concepts

that he already understands. And since, by assumption, he does not yet know the proper

classes, he can only give set-theoretic concepts, that is, predicates formulated in terms

of the ordinary set-theoretic elementhood relation. So God and Gabriel go through all

these concepts: Being 4, not being 4, being an ordinal, not being an ordinal, and so on.

At the end, Gabriel has got to know a number of proper classes, the complement of 4,

the class of all ordinals, the class of all sets that aren’t an ordinal. More precisely, what

Gabriel has got to know is that certain classes have such and such members. His concept

of membership has extended.

This new diagnosis also suggests a natural repair. If the membership relation is de-

veloped in stages then the phrase ‘x is a member of y’ expresses different concepts at

different stages, as do complex formulae built up from it. Moreover, this re-interpretation

proceeds in a way such that formulae which on their usual, naive interpretation lead to

paradox now give rise to concepts that can coherently be taken to have definite exten-

sions. These are the classes of Fine’s theory.

1.2. Technical Implementation

Fine does not leave it at the philosophical motivation as described in the preceding

section. He develops his theory of classes in more formal terms — he sketches the

construction of models. Nonetheless, I consider it worthwhile to set things out even

more explicitly. It will allow me to clear up certain ambiguities in Fine’s presentation.

1.2.1. The Ground Model: Set Theory with Urelemente

Since Fine’s class theory is supposed to extend the set-theoretic universe V and imply,

for instance, a class of all sets, Fine cannot literally define a model for it. What he can

do instead, however, is to define a set-model. Its existence he can prove in ordinary

ZFC extended by the assumption of an inaccessible cardinal. In addition, though, this

construction is also a model in the scientist’s sense. From truth in the set-model we can

generalize to truth in the real world of classes. Thus, Fine’s set-theoretic construction
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serves to motivate a theory that vastly exceeds standard set theory.

Fine starts from a set of urelemente C. On the intended interpretation, these urele-

mente are the proper classes. Fine aims for a class theory closed under complementation,

hence for every set there needs to be a class of its non-elements. Thus, there must be

at least as many urelemente as sets. Since Fine works in ZFC+‘There is an inaccessible

κ’, the size of C is taken to be this κ.

The universe of classes now is modelled by the cumulative hierarchy on the basis of

C. However, this hierarchy must not, as usual, be based on the power-set operation.

If it was then already at the first stage there would be, contrary to Fine’s intention,

many more sets than classes. The 2κ-many sets PpCq could never each have its own

complement class in C. Fortunately, this difficulty is avoided as follows. At any stage

α � 1, instead of the full power set PpVαpCqq we confine ourselves with the subsets of

size less than κ (PκpVαpCqq). Then, VκpCq has cardinality κ itself.2

VκpCq now is the domain of Fine’s models. It will remain unchanged all through the

construction. On it, though, larger and larger membership relations e are defined. The

starting point is ordinary set-theoretic elementhood e0. It gives rise to a first model,

Definition 1. M0 � xVκpCq, e0y.

The range of e0 contains only the pure sets of Vκ. At this first stage, the elements of

C are not yet in the range of the membership relation.

1.2.2. Mapping Urelemente to Formulae (1)

However, many predicates of the language of set theory define proper classes, among

which xx � xy, or xDzpz � H^ � x@y P zpy X z � Hqy (‘x is ill-founded’). The core

of Fine’s construction are functions ∆ that map the urelemente into these conditions

[Fine, 2005, p. 553]. In fact, Fine allows for conditions formulated in an Lκκ extension

of the first order language of set-theory that also contains a constant for every urelement

[p. 551]. Interpreted in M0, such a condition φ defines an extension |φ|0 � VκpCq. Thus,

a new membership relation e1 can be defined whose range now covers proper classes in

C, too.

x e1 y iff x e0 y or x P |∆pyq|0

2|P κVαpCq| � κ κ which on the assumption of κ’s inaccessibility is just κ.
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e1 includes the set-theoretic elementhood relation (left disjunct). In addition, though,

its range now also contains urelemente. On the intended interpretation, the members

of some classes have been revealed. Formally, if a class c is mapped to a condition φpxq

(i.e. ∆pcq � φpxq) and this predicate, according to M0, is true of some objects, then

y e1 c if and only if φ, according to M0, is true of y.

For example, some c will be mapped to the formula ‘Sx’ (∆pcq �‘Sx’). If this formula

is interpreted in the model M0 then it defines a non-empty subset of the domain VκpCq,

in fact quite a large one, namely VκpCqzC. Therefore, c is in the range of e1, and ‘x P c’

will be true in M1 for every set x. Thus, c represents the class of all sets.

Other ‘boxes’, however, remain opaque. There are classes whose extension cannot be

expressed in terms of set-theoretic elementhood. In the model-theoretic construction,

this is reflected by the fact that ∆ maps some urelemente to formulae which do not

‘deliver’ if interpreted in M0 — there are no objects that they are true of. One example

is being in the complement of the ordinal 4.3 The predicate

Dypx P y ^ @upu P y Ø u R 4qq (1)

has an empty extension if interpreted in M0. If ∆ maps some urelement to the condition

(1), that is, if there is to be the complement of 4, the range of the new membership

relation e1 cannot yet exhaust C.

The members of some more classes will only be revealed in the next step, when a

new membership relation is defined in terms of the function |∆pcq|1. If this procedure is

iterated transfinitely many times, it gives rise to a sequence of models.

Mα�1 � xVκpCq, eα�1y where x eα�1 y iff x eα y or x P |∆pyq|α

Mγ � xVκpCq, eλy with eλ �
¤
β γ

eβ, for limit ordinals γ

For the definition of class theories, Fine proposes to focus on the subclass of regular

membership sequences [Fine, 2005, p. 554]. Here, the definition of regularity is based

on the following, simple notion of dependence. Given a mapping ∆ as introduced above,

c ∆-depends on d iff ∆pcq contains a constant denoting d. For x P C, let Dpxq be the

smallest set that contains every y such that x ∆-depends on y. Now, ∆ is regular iff

for every x P C, ∆-dependence is well-founded on Dpxq. A model is called ‘regular’ if

3Clearly, the domain of peλq cannot exceed the universe.
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it is the terminal model of a membership sequence induced by a regular ∆. Although

Fine does not do so himself, the membership of a regular model may naturally be called

‘regular’, too.

According to Fine, regular models have two interesting properties [Fine, 2005, pp.

554n.]. First, regular membership is preserved under permutation of the urelemente not

in its range. Any permutation on Czrnpeαq can be extended to an automorphism on

the model Mα. Intuitively, Gabriel is not able to distinguish between boxes that God

has not yet opened, so that She may swap these without altering the procedure of their

dialogue. Secondly, once the size of the universe has been fixed, the length of a regular

membership sequence determines its terminal model up to isomorphism. Regular models

Mα cannot distinguish between co-extensional urelemente.

Understanding the reason for this requires to go into more details. On the way,

however, it will turn out that Fine’s definitions need some modification. When these

difficulties have been cleared up the specific properties of regular membership sequences

will become clearer, too.

1.2.3. Indeterminate Membership

Fine defines the order of a class as the stage where its members are revealed [p. 554].

Since c enters the range of eα�1 just in case that |∆pcq|α � H, we can alternatively set

orderpcq � mintα� 1 : |∆pcq|α � Hu

Thus, to use the picture again, the order of a class is the stage when the box has

been opened and its content been determined. Clearly, this interpretation of |∆pcq|α

(for α �orderpcq) as the members of c makes sense only if once an urelement has been

mapped to an extension of VκpCq, this extension does not change at higher stages.

Unfortunately, the construction as described so far does not provide the urelemente

with unique extensions. There are formulae φ and stages α such that H � |φ|α � |φ|α�1.

Thus, on Fine’s account, there will be a c such that at different stages, different members

are ascribed to c.

An example is the formula ‘x is membered’.

Dupu P xq (2)

At the outset of the construction, when ‘P’ is interpreted as the ordinary set-theoretic

elementhood relation, 2 is true of all and only the pure sets, i.e. |p2q|0 � VκpCqzC.
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Already at the next stage, though, some urelemente have been added to the range

of the membership relation such that (2) is now true not only of the sets but also

of some of these. Formally, |p2q|1 � VκpCqzpCzrnpe1q. In general, for any stage α

|p2q|α � VκpCqzpCzrnpeαq � |p2q|α�1. For all these λ many different extensions, however,

there is just one urelement c such that ∆pcq � p2q; Fine explicitly wants ∆ to be one-

one [Fine, 2005, p. 553]. What, now, are the members of c? Fine’s construction as he

describes it does not determine the extension for all of its classes.

To show why this is a direct consequence of how ∆ is defined, let me picture Fine’s

construction by a two-dimensional diagram (see figure 1). The vertical axis corresponds

to the increasing membership relation and the horizontal lists the κ many formulae. The

result is a two-dimensional table mapping formulae to their extensions for increasing

interpretations of the relation symbol ‘P’.

On Fine’s account, ∆ maps the urelemente one-one to formulae [Fine, 2005, p. 553].

In consequence, every urelement corresponds to a column of the table. Therefore, as

soon as one formula is mapped to more than one non-empty extension, there are more

non-empty fields in the table than classes. This picture shows why Fine’s construction

must undergenerate: it fails to provide enough classes for all the κ�λ many extensions.

Fortunately, this way of looking at the problem already suggests a solution. If you

wish to retain Fine’s basic idea of a step-by-step reinterpretation of the membership

relation as well as continue interpreting the urelements as concept-extensions, then you

must no longer map the urelemente to formulae but to pairs of one formula and one

stage. In other words, an urelement no longer corresponds to a column of the table, but

to one of its cells. In the next section I will suggest a way to spell out this intuitive idea.

1.2.4. Mapping Urelemente to Formulae (2)

First, using some ordinal enumeration of the urelemente, and encoding of pairs, define

a bijection µ : C ÞÑ κ � λ. Figuratively speaking, µ maps every urelement to a cell of

figure 1, represented by a pair of two ordinals. On this basis, enumerating the formulae

according to their lexicographical order, define

Definition 2. Ξpcq � φα iff µpcq � xα, βy

Importantly, and this is how it differs from Fine’s ∆, the function Ξ is not bijective.

Instead, for every formula φ there are |λ| many urelemente c such that Ξpφq � c. Despite
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eλ VκpCqzC g Y h VκpCqzpCz
�
α λ rnpeαqq

...

eω�1 VκpCqzC g Y h VκpCqzpCzrnpeωqq

...

eω VκpCqzC g Y h VκpCqzpCz
�
α ω rnpeαqq

...

e2 VκpCqzC H VκpCqzpCzrnpe1qq

e1 VκpCqzC H VκpCqzpCzrnpe0qq

e0 VκpCqzC H VκpCqzC

OO

//

xSxy p3q xDupu P xqy . . .

c

∆

OO

d

∆

OO

e

∆

OO

. . .

Figure 1: Fine’s ∆: Formulae and membership relations
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this adjustment, the new mappings provide a smooth replacement of the original, un-

satisfactory ∆. Especially, Fine’s notion of regularity (p. 5) can equally well be applied

to the mappings Ξ.

At first, this modification seems already to have solved the problem of undergeneration.

The increasing extensions of (2) now each make up a separate class. Generally, the

bijectivity of µ ensures that

Fact. For any stage α and any formula φβ there is a c P C such that for any x

x eα�1 c iff x P |φβ|α

However, Ξ gives rise to a new problem. For many formulae, their extensions remain

constant from a certain stage on, for example the following (‘x is in the complement of

g or h’).

Dypx P y ^ @upu P y Ø u R g _ u R hq (3)

Assume that at the first stage (i.e. in the model M0) none of the two classes g and h

are revealed. This means, |Ξpgq|0 � |Ξphq|0 � H. Therefore, both ‘x R g’ and ‘x R h’

are true of every object in the domain of M1, i.e. |x R g|1 � |x R h|1 � VκpCq. But there

is no object in the range of e1 (which interprets ‘P’ in M1) that is co-extensive with the

VκpCq (κ is inaccessible). Hence, there is no witness for the existential quantification in

(3) — interpreted in M1, (3) is false of every x. For this reason, |p3q|1 � H.

But assume that at stage 1, at least g (but not h) is mapped to some set of objects such

that |Ξpgq|1 � H. At the subsequent, second stage of the construction, ‘x R g’ therefore

is no longer vacuously true of everything. The formula ‘Dypx P y ^ @zpz P y Ø z R gqq’

therefore will have a non-empty interpretation in M2. However, |x R g|2 still is VκpCq

such that (3) is false in M2, too. Therefore, (3) still has an empty interpretation in M2:

|p3q|2 � |p3q|1 � H. Only when both Ξpgq and Ξphq have been mapped to non-empty

interpretations, say at the third stage, ‘x R g _ x R h’ is false of some objects in the

universe and (3) again true in M3. In this case, however, the extension of (3) has been

fixed also for any stage α ¡ 3.

This example shows that modified function Ξ maps different urelemente to the same

extension. Whereas ∆ was not able to reflect differences, Ξ now overgenerates. However,

this difficulty can be resolved if the definition of membership is carefully modified, as I

will explain in the next section.
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1.2.5. Restricted Membership

The modification I would like to propose can also be motivated from Fine’s heavenly

dialogue, or from a modest development of his story. When Gabriel has submitted a

condition, and God opened a box that contains just those objects of which the predicate

is true, She commands Gabriel to look back at all the boxes they have opened so far.

She lets him check if any of these contains the same objects as the one just opened. If

so, God closes it again. Only when Gabriel has done so, may he continue with the next

condition. Thus, God ensures that at the end of their game, no two open boxes have

the same content.

Let me now formulate this idea within the framework of Fine’s set-theoretic models.

More precisely, I will add to Fine’s definition of eβ�1 a constraint that corresponds to

Gabriel’s checking all previously opened boxes.

First, notice that the function µ induces a natural ordering of the urelemente, when

the pairs of ordinals are arranged in the reverse lexicographical order.

Definition 3. For c, d P C, c ! d iff µpcq � xα, βy, µpdq � xγ, δy and β   δ, or β �

δ and α   γ

By means of the relation ‘!’ we can express that some boxes are opened earlier than

others. Thus, it allows me to sharpen the idea of looking back at the boxes opened so far,

and take a first shot at the condition I wish to add to Fine’ construction. An urelement

d that we have just for the first time mapped to a collection of objects is added to the

range of the membership relation only if there is no c ! d of the same extension.

Due to the definition of ‘!’, the condition ‘there is no c: c ! d’ excludes those

urelemente c that have been assigned the same extension at some earlier stage of the

construction (formally, orderpcq   orderpdq). Nonetheless, these stages are again referred

to when we compare extensions |Ξpcq|α which are functions of Ξpcq and some stage α.

Therefore, to fully formalize the idea intended we also need to quantify over the stages

α.

In sum, I propose the following definition of models Mα.
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Definition 4. The ground model M0 has been defined (def. 1). Given Mα let

Mα�1 �xVκpCq, eα�1y where x eα�1 y iff x eα y, or x P |Ξpyq|α

and for any γ ¤ α there is no c P C such that c ! y and |Ξpyq|α � |Ξpcq|γ .

Mγ �xVκpCq, eλy with eλ �
¤
β γ

eβ, for limit ordinals γ

Henceforth, I will use the expression ‘membership sequence’ only in the sense of this

definition and will mean by ‘membership relation’ some eα as it occurs in such a sequence

of models Mα.

This slight modification of Fine’s construction solves the problems of the original

proposal. On one hand, the use of Ξ ensures that each class is ascribed a definite

membership (see proposition 1.2.4 above). Especially, the order (p. 6 above) of any c is

well-defined.

Definition 5. orderpcq �mintα : c P rnpeαqu

On the other hand, the restriction now imposed on the definition of eβ�1 rules out

that two different urelemente are assigned the same collection of objects. To consider

the example from above, at the third stage, some urelement u such that Ξpuq � 3 is

mapped to the union of the complements of c and d. From now on, any urelement will

only be added to the range of the membership relation only if it is not assigned this

extension |p3q|3. In other words, u is guaranteed to remain the unique urelement that

represents the class-union of the complement of c and the complement of d.

Another instructive example is found in the two formulae ‘x is a set’ (Sx) and ‘x has

a member’ (Dypy P xq). Interpreted at stage 0, these predicates have the same extension,

namely the pure sets VκpCqzpCq. However, there will be two different urelemente c and

d such that ΞpCq � xSxy and Ξpdq � xDypy P xqy but µpcq � xα, 0y and µpcq � xβ, 0y. In

other words, there will be two different urelemente corresponding mapped to the same

extension VκpCqzpCq. Fortunately, though, due to the lexicographical, i.e. strict linear

ordering of the formulae we can assume, without loss of generality, that c ! d. Therefore,

d will not satisfy the condition imposed on membership in definition 4 (|Ξpdq| � |Ξpcq|

and c ! d), hence c witnesses the second conjunct).

This reasoning can be generalized to a proof that the construction does not overgen-

erate.
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Proposition 6. The classes of the models Mα are extensional. For any c, d P C and

any α, if c, d are ascribed members (Dxpx eα c^ x eα dq) then

@xpx eα cØ x eα dq Ñ c � d

Proof. See appendix A.1.

Moreover, the recursive definition of the Mα captures the intuitive idea of the con-

struction as a step-by-step process in the course of which more and more classes are

defined. The range of the membership relation increases strictly. More generally,

Proposition 7. for any membership sequence, the range of the membership relation

increases monotonically, in the sense that for every α, β   λ,

If rnpeαq � rnpeβq then rnpeα�1q � rnpeβ�1q

Proof. See appendix A.2.

The monotonicity of the membership sequences also ensures the existence of least fixed

point membership relations eλ. Every class definable at this stage is already represented

in the range of eλ (if x P |Ξpyq|λ then xeλy). The model Mλ corresponds to the final

round of God and Gabriel’s dialogue (1.1), at the end of which Gabriel has fully un-

derstood class membership. How large this terminal ordinal λ really is depends on how

quickly the urelemente C are used up. This again is a matter of which predicates φpxq

the classes are mapped to, and therefore depends on Ξ.

Fine, however, prefers to fix the terminal ordinal directly. For this, he introduces the

notion of class-inaccessibility. λ is class-inaccessible if there is no ordinal α   λ such

that for any membership sequence Mα defines a well-ordering of order-type λ (if there

is such an ordinal α, λ is accessible).4

Fine proposes to focus on the least such class-inaccessible ordinal [Fine, 2005, p. 556].

Fine motivates this choice from the heavenly dialogue by which he had already illustrated

the construction of the Mα. God leaves it to Gabriel to decide how long their question-

and-answer game continues.

Clearly, though, Gabriel cannot overview the construction as a whole. Nonetheless,

there is a way for him to fix the length of the dialogue from ‘within’. The membership

4In fact, Fine’s notion of class-accessibility is somewhat weaker since it quantifies only over regular

models in the sense of §1.2.2 below.
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relation eα allows to formulate well-orderings on the universe. Each of these fixes an

ordinal (their order type) and thus may be used by Gabriel to request a membership

relation eα.

If the construction proceeds up to the least class-inaccessible ordinal, therefore, it is

continued as long as Gabriel may possibly wish. Membership sequences of this length

thus reflect God’s ‘. . . well-known love of freedom’ [p. 556].

This is a nice picture. A more sober reason to let λ be the least class-inaccessible

ordinal is found in the following remark.

Just as set-inaccessibility represents a natural closure condition for the for-

mation of sets, so class-inaccessibility represents a natural closure condition

for the definition of classes. [p. 557]

Class-inaccessibility, Fine suggests, transposes the usual set-theoretic notion into the

class-theory of the models Mα, and thus allows for the following analogy. Just as the least

inaccessible cardinal is a natural upper bound to the cumulative hierarchy, the model of

the least class-inaccessible cardinal completes the development of class-membership.

In Fine, the properties of the terminal models also depends on the cardinality or

‘height’ of the universe VκpCq. Namely, since the range of the membership relation

keeps increasing, the size of VκpCq constitutes an upper bound to the terminal ordinal

λ.5 However, since above the cumulative hierarchy has been constructed by means of

the restricted power-set operation P κ (p. 4), this complication may be neglected. In

the present context, the size of the universe just is κ.

Fine’s construction was motivated by the logical conception of class: Given some

concept, there is a class of everything that falls under this concept. The challenge was

not only to ensure that but also to explain why certain concepts, like the one of not

being one’s own member, do not give rise to classes.

The theory of the model Mλ is Fine’s proposal of a class theory. It does a remarkable

job. Since it is the fixed point of a membership sequence, for any concept definable in Mλ

there is a corresponding class in the range of eλ. In fact, the theory is closed under the

Boolean operations, most interestingly union and complementation. Moreover, Fine’s

model-theory at its core implements the logical conception of class. The function Ξ, in

terms of which a membership sequence is defined, maps concept to their extensions.

5Clearly, the domain of peλq cannot exceed the universe.
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Technically the challenge has been answered. We have a way of deciding which con-

cepts fix a class — those definable in the model. But, the real philosophical work is yet

to be done: Why does Fine’s construction work? Eventually, I will propose that Fine’s

construction works because it reflects the groundedness of classes. First, however, let

me look at how Fine justifies his construction. It will turn out that Fine’s motivation

makes implicit use of the idea of his class membership being grounded in set member-

ship. Spelling out Fine’s philosophical account will therefore naturally lead to my case

that his theory is a theory of grounded classes.

2. Accounting for Fine’s Class Theory

Above (§ 1.1), I motivated Fine’s construction from the logical conception of class. Ac-

cording to it, classes are concept-extensions, containers that collect all and only the

objects which fall under a given predicate. However, classes are first-order objects them-

selves, such that some device is needed to rule out the paradoxical instances.

In the preceding section I have presented Fine’s theory of classes and its models. For

their philosophical motivation I had distinguished between naive comprehension and

naive membership — now I turn to clarify this idea.

2.1. Loosening the Vicious Circle Principle

Fine contrasts his proposal with predicativism [Fine, 2005, pp. 569nn]. The difference

he emphasizes is not technical but lies in the philosophical account of (real) definition.

Fine’s theory and predicativist class theory are motivated by two different interpretations

of the intuitive thought that definitions must not be circular.

Predicativism is motivated by the view that the definition of a class is both necessary

and sufficient for its existence [p. 569]. In this sense, a definition introduces what it

defines. If so, then the definition must not presuppose the object to be defined. Formally,

the defining term must not involve quantification over a domain to which this object

belongs. In other words, predicativists endorse the Vicious Circle Principle (‘VCP’).6

A class comprehension schema that obeys the VCP, however, cannot satisfy the logical

conception of class. Many concepts that are expected to define a class do not meet the

6To apply Gödel’s useful distinction between three different understandings of the VCP [Gödel, 1990,

p. 135], the principle at hand is the first of these, pertaining to the phrase ‘definable only in terms

of’.
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VCP. One example is the concept of being a complement. The corresponding formula

‘Dy@zpz P xØ z R yq’ involves two quantifiers. Neither the existential nor the universal

quantifier, however, are in any way restricted - they range over the whole universe.

Especially, their range includes the class to be defined. Thus, the concept does not meet

the requirement imposed by the VCP. No predicativist theory of classes can satisfy the

logical conception.

Fine, now, holds that to define a class c, its existence may be assumed [p. 570].

Definitions need not carry the burden of existence. Instead, the definition of c serves

to distinguish it from other objects, to single it out from the rest of the universe. In

a slogan, definitions don’t introduce, they identify. On this view, Fine argues, a class

definition does not presuppose ‘. . . the objects in the range of its variables but the

extension of its membership predicate’ [ibid.].

I think it’s worthwhile spelling out this inference. On one hand, if a definition is not

necessary for the existence of c, then quantification over the domain of c does not make

the definition circular. Thus, Fine’s alternative account of definition need not satisfy

the VCP; it allows for impredicative classes.

On the other hand, though, the definition of c must provide a criterion for any object

to be c, respectively to differ from it. Needed, in other words, is a first level identity

criterion:

@xpx � cØ φpxqq

The definition of c presupposes one instance of this schema.

If the object to be defined is a class in the logical sense, that is the extension of some

concept ψpxq, then an identity criterion is provided, if any sentence ψpt{xq, for t some

object of the domain, has a determinate truth value. This, again, can only be the case if

every atomic sentence x P y in ψptq is either true or false. In sum, on Fine’s identification

view of definitions, the definition of a class tx|ψpxqu presupposes that the membership

relation is interpreted for all its occurrences in ψ. This is how it presupposes ‘. . . the

extension of its membership predicate’ [ibid.]

Since on the present account of definition the universe of classes as a whole can be

presumed, the relation’s field as such is unproblematic. What needs be determined

carefully is just how the classes are distributed over its domain and range — in other

words, the extension of ‘P’. And it is at this point that the difference between a naive

and a sophisticated understanding of membership comes into play. The naive class
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theorist assumes that for every class it can be determined whether any object is among

its members. Alas, this ‘anything goes’ approach leads straight to paradox. Or, back to

a diminished predicativist universe.

If neither is wanted, therefore, the notion of class-membership needs development.

What, however, distinguishes naive from elaborate, vicious from safe membership? Fine

provides an ingenious formal definition, but he does not spell out its philosophical foun-

dation. Thus, his proposal may seem ad hoc, and the reliability of his method uncertain.

Let me attempt to explain why the membership relation of Fine’s terminal models is

of the right kind.

2.2. Fine’s Approach is a Groundedness Approach

If we want to leave behind naive membership, we must no longer presume the range of

P to include every class. Instead, we need to build up the range carefully, and ensure

that whenever a class enters the range, it is provided with an identity criterion. How do

Fine’s membership sequences succeed in this?

The difference between the membership relation of the paradoxes and that of Fine’s

impredicative7 but consistent class theory is that Fine’s terminal membership relation eλ

is developed from ordinary set-theoretic elementhood in a step-by-step manner. These

two aspects of Fine’s construction, its departure from ordinary ZFC and the stepwise

proceeding, together provide his classes with definite identity. Thus, on Fine’s account,

they ensure safe definition and consistent class theory. Let me explain why.

The base case is, appropriately, basic. Fine’s initial model M0 � Vκ, as any transitive

set, validates the ZFC axiom of Extensionality, which is just a simple criterion of identity

for sets.

Second, Fine’s membership sequence as defined above (p. 10) preserves the definite

identity of classes; it ensures that whenever a class is defined, this class is already

endowed with an identity criterion. The limit case is safe if the successor stages are, since

here nothing is added to the range of P; we just collect the previous stages. At successor

stages, the class c enters the range of the membership relation only if it represents

the extension of a concept definable in the previous model. For this predicate φpxq,

therefore, it is determined, for any t, whether Mα ( φptq or not. Thus, the fomula

@xpx � c Ø φpxqq will serve as an identity criterion for c. Since only such classes

7In the strict sense that it does not obey the VCP.
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tx|φpxqu, for concepts φpxq definable in Mα, are added to the range of membership in

Mα�1, every class of Fine’s theory is ensured to come with an identity criterion.

I now propose to sum up the foregoing as follows. Fine’s membership relation eλ is

grounded in ordinary set-theoretic elementhood. It is its groundedness that distinguishes

it from the naive membership relation and thus allows Fine to endorse impredicative

instances of comprehension.

3. Groundedness

Notions of groundedness have figured in the literature on the semantic paradoxes.8 How-

ever, I have in mind a more general conception. It does not only apply to sentences,

propositions, or to the truth-values of sentences or propositions. For any domain D

and any collection of D-objects we may ask whether these objects are grounded; more

precisely, whether they are grounded in some designated collection G.

What does it mean for S to be grounded in G? I take groundedness to be a philo-

sophical notion. Therefore, let me first give an informal picture. On its basis I will then

develop a mathematical model of groundedness that allows me to specify my thesis that

Fine’s class-membership relation is grounded in ordinary set-theoretic elementhood.

3.1. Groundedness, Philosophically

In a nutshell, S is grounded in G if you arrive at S from G by applying successively

some operation γ of the right, grounding kind. This operation and its iteration are two

distinct aspects of the notion of groundedness. In order to spell it out I will consider

these aspects separately, explaining first the grounding character of γ, and then say

something more about its iteration.

You may think of γpGq as a construction from G, but only metaphorically. The

proposed account of groundedness is meant to be thoroughly realist. Groundedness, as

I think of it, is an objective property. Objects are grounded in virtue of how the world

is like, independently of our constructive abilities.9 Consequently, there are no limits as

to how γpGq is computed but for one crucial constraint: the only input is G.

8[Herzberger, 1970, Kripke, 1975, Yablo, 1982, McCarthy, 1988, Maudlin, 2004, Leitgeb, 2005]
9For the sake of readability, I will nonetheless make frequent use of construction talk; this will always

be merely metaphorical.
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However, the interesting collections of objects grounded in G are not obtained in a

single step. Instead, the operation γ is iterated. Once the objects γpGq are obtained, they

may be used themselves as input for γ. Thus, another collection γpγpGqq is generated,

which again is grounded in G; and so on. Notice that since the grounding operation is

iterated, some conception of ordinal number is built into the notion of groundedness.

This is the ‘step-by-step’ aspect of groundedness that I have found in Fine’s construction.

I do not think that while γ is iterated, the collections necessarily become bigger and

bigger, or richer and richer. γpXq may well be just a fragment of X. Nonetheless, every

new collection obtained from applying γ is grounded in the starting point G. Especially,

S being grounded in G does not mean that no new collection γpSq � S could be obtained

from it (groundedness does not imply being a fixed point).

Since groundedness does not depend on any subject to carry out all the iterations,

there are no constraints as to how many times the operation is applied. Therefore, the

iteration of γ is continued beyond limit stages and the notion of ordinal numbers at work

in groundedness is fully transfinite.

In sum, a collection S is grounded in G if there is an operation γ such that, if you

start from G and iterate γ transfinitely often, whereby at each stage you only use what

the previous stage has given, you arrive at S.

3.2. A Formal General Theory of Groundedness

I now turn to formalize the intuitive idea of groundedness sketched in the previous

section. This formalization is meant to model (in the scientist’s sense) groundedness.

I do not intend it to carve out the notion’s essence. The definition suggested below

provides handy tools to analyze various supposed cases of groundedness. Nonetheless,

it is the philosophical idea of groundedness sketched above that I take to be basic.

For D some domain, S � D is grounded in G � D if there is an operation γ on D

such that S is obtained from G by iterated application of γ. This iterative aspect of

groundedness is spelt out best as follows. G and γ define a function F : Ω ÞÑ PpDq:

F p0q � G

F pα� 1q � γpF pαqq

F pβq �
¤
α β

F pαq, for limit β
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By requiring S to be F pαq for some ordinal α we thus give formal expression to the

intuitive thought that S arises from G by iterated application of the operation γ.

It is somewhat more intricate to spell out what is required of the operation γ. The

informal idea is that determining γpXq should not require us to, speaking figuratively,

go beyond X. The task is to model this intuitive picture in mathematical terms.

Abstracting from intuition, γ is a mapping on the domain D, a way of arriving from

some S at another collection S1. What enables γ to ground S1 in S is how we arrive

from S at γpSq. For one, γpSq should be obtained in an orderly manner, following a

general rule that treats every S the same. Thus, the computation metaphor evoked above

carries further than it may have initially seemed. Not that the grounding operation γ

really was a computation, but operations of the right, grounding kind are well described

in computational terms. Therefore, I choose a recursion-theoretic setting to develop a

formal definition of groundedness.

Moreover, thinking of γ as an algorithm suggests a neat way of formalizing the intuitive

idea that the grounding operation ‘only uses what it is given’. This informal constraint

on γ is well rephrased as saying that the only input of this computation is X. Recursion-

theory, now, provides the means to make explicit what is used during a computation.

If fpxq can be computed using only another function g as ‘oracle’ then f is said to be

recursive in g. The grounding character of γ may therefore be formally modelled as the

recursiveness of γpXq in X.

At a closer look, however, this is too restrictive. My realist understanding of ground-

edness does not require γpXq to be computed by a Turing machine from X. There is no

need to assume that the construction of γpXq should be completed after finitely many

steps. As explained above, the conception of groundedness I wish to capture comes with

all the ordinals. Accordingly, I prefer not to put any restrictions on how long it may

take to apply γ to X. Fortunately, generalized computability theory allows me to put

this informal idea into mathematical terms.

Take the usual Kleene equations (initial functions, composition, minimal recursion)

but allow for derivations of length β, for any limit ordinal β. A function is β-recursive

if it can be deduced from the usual equations in β many steps. Thus, the generalized

sense of recursiveness relevant for my formal definition of groundedness is what is known

in the literature as β-recursion [Shore, 1978, Sacks, 1990, Chong and Friedman, 1999].

However, I confine myself to a notion of reducibility simpler than what has become
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standard in the recursion theoretic literature.10 Following [Shore, 1975, Shore, 1978] I

will speak of one set A being ‘β-calculable’ from another set B if cA can be deduced

from the recursive equations and cB, however many steps this may take.

In sum, I propose the following formal definition of groundedness.

Definition 8. S � D is grounded in G � D iff

1. there is an operation γ : D ÞÑ D and a limit ordinal β such that for any X � D,

γpXq is β-calculable from X and

2. S � F pβq for some ordinal β where F p0q � G, F pα � 1q � γpF pαqq and F pλq ��
α λ F pαq

Otherwise, it is ungrounded

Below, I will show that Fine’s terminal membership eλ is grounded in set-theoretic

elementhood e0 in just this sense. Before returning to Fine’s class theory, however, it will

be useful to consider some paradigm cases of groundedness, and show how the definition

applies to them.

3.2.1. Well-Founded Sets

To warm up, let me show how my formal account of groundedness applies to the cu-

mulative hierarchy of the well-founded, pure sets (that is, V). Intuitively, the Vα’s are

grounded in the empty set. Therefore, let D be Vκ for some inaccessible κ and G � H.

γ becomes the power-set operation PpSq, which can be spelt out as follows:

y P PpSq iff @upu P y Ñ u P Sq

The universal quantifier is bound by y, and ‘u P S’ is trivially recursive in S. Therefore,

PpSq is recursive in S and grounds every Vα in H, in the specified sense of definition 8.

3.2.2. Kripke Truth Theory

Kripke (1975) describes a family of truth theories. I will focus on the theory of his

least fixed point model in strong Kleene logic. This theory is widely taken to be a

paradigm case of groundedness. When motivating his construction, Kripke draws heavily

10I may do so because for the present purpose it does not matter that β-calculable functions may need

more than β-many steps to be computed.
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on groundedness intuitions. Therefore, the adequacy of my proposed formal definition

of groundedness clearly depends on whether it applies to Kripke’s theory.

Let Dk be the set of (the codes of) sentences of the language of arithmetic plus truth

predicate, and Gk collect the (codes of) truths of the standard model N (Gk � txφy|N (

φu). Consider extensions of N by a partial interpretation xE,Ay of the truth predicate

(NpE,Aq). Define a function γk : PpDkq ÞÑ PpDkq such that

γkpSq � txφy|NpS, txψy|x ψy P Suq ( φu

γk is a monotone operation on Dk, and Kripke’s truth theory can be described as

Fkpω
CK
1 q. Thus, to show that the theory of this least fixed point is grounded in G,

in the formal sense of definition 8, I only need to explain how γkpSq is calculable from

S.

In fact, γkpSq is recursive in S. Notice that the definition of γkpSq can be spelt out

in terms of the (primitive) recursive encoding functions of pairs and syntax, the only

non-recursive elements being a universal quantification over S and the model-theoretic

truth predicate NpSq ( x. Both, however, can be computed once S is available.

Thus, the formal definition of groundedness has proven applicable to prominent cases

of groundedness. Equally important, however, it is to show that the definition proposed

does not apply to such cases that resemble the paradigm cases above closely but do not

themselves reveal groundedness. The second example of intuitive groundedness I have

given above was Kripke’s theory of the minimal fixed point. Now, I turn to an intuitively

ungrounded variant of it and show that it is also ungrounded in the sense of definition

8.

3.2.3. An Ungrounded Fixed Point Truth Theory

Let Dk and Gk be as above. Dk is the set of sentences of a first order language of

arithmetic plus truth predicate, and Gk the set of first order arithmetical truths. In

this familiar setting define a deviant operator γd. Take the ordinary Kripke fixed point

theory considered before. Its sentences can be enumerated, such that φn is the nth

according to this lexicographical ordering. Given this, define

γdpxq � xY tφn|n ¤ the number of sentences in x that contain the truth predicateu

such that γdpGkq is Gk Y tφ0u, γdpGk Y tφ0uq � Gk Y tφ0, φ1u and so on.
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γd, too, is monotone and we may consider its least fixed point. Clearly, the consistency

of Kripke’s theory is inherited to it. Nonetheless, its consistency is not grounded in the

consistency of the non-semantic base theory. The operation γd is of the wrong kind, it

does not ground its range in Gk.

Recall that according to my informal sketch in section 3.1 the grounding operation

may only use what it is given as input and must not rely on other resources. The fake

Kripke jump γd, however, at any stage makes use not only of what has been obtained

before but also goes through the original Kripke fixed point to find the sentences next

in the lexicographical order.

The intuitive difference between the grounding Kripke jump and γd can also be seen as

follows. Motivating his construction Kripke describes how a speaker of the non-semantic

base language learns to use the truth predicate if she is taught the operation γk (and

given some time). It seems plausible that a speaker, at any rate an idealized speaker as

in Kripke’s thought experiment, could learn to use γk. All there is to γk is applying the

Strong Kleene evaluation scheme to sentences containing truth.

γd, however, is much less suitable as the key to learn truth talk. For one, its definition

seems too complicated to lend plausibility to the picture of someone applying the opera-

tion to her arithmetical knowledge. Moreover, even if an idealized subject had mastered

γd then there would be no more need for her to go through the construction of its fixed

point, not even one step. Having grasped the definition of γd she already commands the

full Kripke truth theory; putting it into a lexicographical order is no further obstacle.

My formal definition 8 captures well this intuitive difference between the Kripke jump

and γd. As seen above, γk meets the requirement that the definition imposes on the

grounding operation — γkpXq is recursive in X. Not so γdpXq. Recall that γkpXq is the

extension of X by the sentence φn that stands at the nth position in the lexicographical

ordering of the original Kripke fixed point theory, where n is the number of sentences

with truth predicate that occur in X. However, just which sentence this is cannot be

determined from X. X by itself only tells us, speaking figuratively, which row to look up

in the list, but it does not give a hint what is found there. To know this, we first need to

know the sentences of Kripke’s theory, all at once. Only by consulting the Kripke fixed

point Fkpω
CK
1 q, therefore, we can find out which sentence is to be added next. In other

words, the computation of γkpXq from X requires the oracle Fkpω
CK
1 q.

Thus, γd does not meet the requirements of my definition 8. The theory of its least

fixed point, although consistent, is ungrounded in the formal sense of the definition. This

22



definition, therefore, has not only proved correct with respect to cases of groundedness

but as well with respect to cases of ungroundedness.

I will therefore assume the adequacy of definition 8 and on its basis now turn to show

that Fine’s class membership relation eλ is grounded in set-theoretic elementhood e0.

3.3. Fine’s Terminal Membership is Grounded

Recall the model-theoretic construction of section 1.2 and its modification on page 10.

Let D be the set of pairs xx, yy for any x, y P VκpCq (D � VκpCq
2). Further, let the

ground G be the set-theoretic membership relation e0 � txx, yy|y P VκpHq and x P yu.

Finally, define the operation γF : D ÞÑ D as follows.

γF pSq �

$&
%
eα�1 if S � eα for some α

S otherwise

γF and G define a function F from the ordinals into the power-set of D such that

Fine’s designated class-membership relation eλ is F pλq, for the least class-inaccessible

ordinal λ (see p. 12 above). To show that eλ is indeed grounded in G in the sense of my

definition 8 I only need to show that for any S, γF pSq is calculable from S.

If S is not the membership relation of some model in Fine’s membership sequence

then γF pSq � S and therefore trivially recursive in S. If S is some eα then (compare

definition 4)

γF peαq � txx, yy|x eα y, or x P |Ξpyq|α

and for any β ¤ α there is no c P C such that c ! y and |Ξpyq|α � |Ξpcq|β.

The relation ‘x P |Ξpyq|α’ is recursive in eα, since it abbreviates Mα ( φpxq, for φ � Ξpyq,

and truth in the structure xVκpCq, eαy is calculable from eα.11

My discussion of Fine’s proposal above showed that the definition of eα�1 needs the

following constraint:

@β ¤ α Dc P Cpc ! y ^ |Ξpyq|β � |Ξpcq|βq (4)

11Logical truth and identity is recursive and the membership relation of Mα is trivially recursive in eα.

Set-hood, finally, can be defined in terms of eα, quantifying over ordinals less than α: Sx iff Dupueαx

and @β   αpueβxqq.
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On the intended interpretation, this formula expresses a function of y that is λ-calculable

from eα. Since there are only κ many urelemente, and λ ¡ κ, the set of urelemente C

is λ-recursive.12 Therefore, not only is the universal quantifier over urelemente implicit

in (4) λ-recursively bounded; ‘!’, too, is defined in terms of basic operations on the

ordinals and the function µ : C ÞÑ κ� λ.

Since the recursive encoding of pairs of natural numbers in the natural numbers is

straightforwardly generalized to the ordinals, µ is λ-recursive. Therefore, γF pXq is

calculable from X. This ensures the operation γF to ground its output. Especially,

Fine’s class membership eλ is grounded in the set-theoretic elementhood relation.

4. Comparing Groundedness with Fine’s Regularity

Having shown that Fine’s class membership relation is grounded in ordinary set mem-

bership, I now turn to compare my notion of groundedness with his concept of regularity

(see p. 5 above). Fine draws an analogy between his regular models and the well-

founded models of ZF [Fine, 2005, p. 554]. In section 3.2.1 above, I have found that

the well-founded sets are grounded. Therefore, Fine’s analogy suggests that by focusing

on regular mappings Ξ he aims for grounded class membership. However, my notion

of groundedness exceeds regularity. What my argument from the previous section has

shown is that any model of a membership sequence is grounded in the set-theoretic el-

ementhood relation. So, a grounded membership relation may not be regular in Fine’s

sense. To use Fine’s own example [Fine, 2005, p. 553], consider a Ξi that maps c P C

to ‘x � d’ and d P C to ‘x � c’. By the extensionality of Fine’s classes (proposition 6

above), ‘x � d’ is equivalent to ‘@ypy P x Ø y P dq’. Therefore, at any stage α where

d is not in the range of the membership relation, |Ξipcq|α is empty, such that c is not

added to the range of eα. In other words, c will be ascribed members only when x P d is

satisfied by some objects of VκpCq However, for d to enter rn(eβ) for β ¤ α c would have

entered the range of the membership relation first —which contradicts the assumption

that α   β. The same reasoning applies to Ξpdq; hence, neither c nor d ever enter the

range.

More generally, irregular Ξ imply that some urelemente never are ascribed members in

the sense of some membership relation eα. But this does not mean that the corresponding

membership sequences do not complete. They are still monotone (proposition 7), and

12Simply generalize the standard reasoning that ensures finite sets to be recursive.
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therefore still have a least fixed point. Especially, grounded but irregular membership

relations still give rise to consistent class theories. Prominently, they do rule out Russell

style antinomies. For, assume that there was such an r � tx| xeλxu that itself was in

the range of eλ. By the definition of eα�1, this can only be if for some α   λ, δαprq

is the extension |x R x|α This subset of the universe, however, need be just tx| xeλxu,

which is |x R x|λ, contrary to α   λ. Hence, r cannot be in the range of eλ; ‘ reλr’ is a

simple truth that does not give rise to any contradiction.

I conclude that Fine’s definition of regularity does not capture groundedness ideas.

Instead, the regularity of mappings Ξ ensures the class membership relation to eventually

include every urelement. For regular Ξ, namely, Ξpcq ‘. . . “bottoms out” in definitions

that make no appeal to proper classes’ [Fine, 2005, p. 554]. Consequently, for any c there

will always be a stage α where |Ξpcq|α is non-empty. By definition 4, c will therefore

enter the range of eα�1. Introducing a precise concept of groundedness and applying it

to Fine’s work thus has also allowed me to specify the role of the notion of regularity

that he himself deploys in his paper.

5. Conclusion

Although some technical problems needed attention along the way, the present study

was guided by a philosophical question. What is the reason that certain concepts which

violate the Vicious Circle Principle may nonetheless be mapped to first order objects,

that is, define classes? The answer I developed in the present essay is: classes are

grounded in the cumulative hierarchy of sets. An impredicative concept defines a class,

therefore, if it is grounded in set theory itself.

Fine’s model-theoretic construction, as reformulated in my section 1.2, shows that

impredicative class-comprehension is available. Fine also provides his work with philo-

sophical motivation (§2.1). Although I did not find his account to be the principled

explanation that the present study aimed for, it gave a starting point that I developed

into a conception of groundedness (§§2.2, 3.1).

In order to clarify the informal account of section 3.1 I proposed a formal definition

of groundedness in recursion-theoretic terms (§3.2). I argued for the adequacy of this

definition on the basis of two intuitive cases of groundedness §§3.2.1, 3.2.2, as well as

two non-examples §§??, 3.2.3. I showed that Fine’s terminal membership is grounded

in the precise sense of this definition. Finally (§4), I briefly compared my notion of
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groundedness with Fine’s definition of regular membership sequences.

Fine’s construction succeeds because it ensures that the membership relation in terms

of which classes are defined is grounded in ordinary set-theoretic elementhood. Fine’s

theory of classes exemplifies how fruitfully the concept of groundedness can be applied;

this I hope to have shown by the present study.
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A. Appendix

A.1. Extensionality of Proper Classes

Recall proposition 6 that ensured the extensionality of Fine’s classes.

Proposition. For any c, d P C and any α, if Dxpx eα cq then

@xpx eα cØ x eα dq Ñ c � d

Proof. Argue by induction on α. If α � 0 then the claim is vacuously true since no

urelement is in the range of e0. For α limit ordinal, rnpeαq �
�
γ α rnpeγq such that

px eα cØ x eα dq only if px eγ cØ x eγ dq for some γ   α, but then c � d by the induction

assumption.

Assume that α � β � 1, Dxpx eα cq and @xpx eβ�1 c Ø x eβ�1 dq. It cannot be that

x eβ c but not x eβ d. Namely, for x not to be in the range of eβ there would have

to be a γ   β such that |∆1pcq|γ � |∆1pdq|β which contradicts the assumption that

d P rnpeαq (x eβ c Ñ x eβ�1 c Ø x eβ�1 d). Hence, there are two cases. Either (i),

x eβcØ x eβd and this implies, together with the induction assumption, c � d. Or (ii),

x P |∆1pcq|β Ø x P |∆1pdq|β such that |∆1pcq|β � |∆1pdq|β. Assume that c � d and

without loss of generality c ! d – by the strengthened definition of eα�1 now x cannot

be eβ�1 d, contrary to the assumptions x eβ�1 c and x eβ�1 cØ x eβ�1 d.

A.2. The Monotonicity of the Membership Sequence

Recall proposition 7

Proposition. For every α, β   λ,

If rnpeαq � rnpeβq then rnpeα�1q � rnpeβ�1q
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Proof. The claim follows easily from modest observations. For one, the case of α ¥ β

is trivial (observe that the range of e increases). If α   β, the following reasoning by

double induction suggests itself. First, notice that for any α and limit β, rnpeβq ��
α γ βrnpeγq �rneα�1. For α � 0, assume that x P e1. If β � 1 then clearly, x P

eβ�1. If β � γ � 1 and x Prnpeγq then x Prneβ�1, too. For successor α and β �

α � 1, rnpeα�1q �rnpeβq �rnpeβ�1q follows straightforwardly. The case for β � γ � 1 is

established just like before.
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