Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Birkbeck, London

Oslo, September 21st 2012

European Research Council

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

・ロト・国ト・モート ヨー うへの

Section 1

Introduction

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Idea-Extensions and Russell's Paradox

 Bolzano can be read as endorsing the following principle (Berg 1962, 71):

Every non-empty idea Φ has an extension $\hat{x}\Phi x$ such that for every object a, a is contained in $\hat{x}\Phi x$ just in case a has Φ .

- 1. Socrates is mortal. But, the extension of the idea of mortality is not.
- 2. Hence, the idea of being an extension that is not contained in itself is non-empty.
- 3. Call its extension *r*. It is contained in itself just in case it is not. Contradiction.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Contents

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへぐ

Section 2

Two Ideas of Collection

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

terative Conception of Set

Iterative Conception of Proper Classes

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Combination and Definition

Combination We collect some things by a sequence, possibly uncountable, of independent decisions whether a given object belongs to them or not.

- A *combined* collection we call a *set*.
 - $\{x, y, ...\}$
 - *x* is an element of the set *y*: $x \in y$

Definition We collect some things by means of a *condition*, which exactly they satisfy.

- A *defined* collection we call a *class*, or a *concept-extension*.
 - $\{x : \Phi x\}$
 - x is a member of the class y: $x\eta y$

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

ntroductior

Two Ideas of Collection

iterative Conception of Set

Iterative Conception of Proper Classes

Naive Comprehension and Paradox 1

NCC Let Φ be any condition. There is a class $\{x : \Phi x\}$ such that for every object a, $a\eta\{x : \Phi(x)\}$ gdw. $\Phi(a)$

- $\{x: \neg x\eta x\}\eta\{x: \neg x\eta x\}$ iff $\neg\{x: \rho(x)\}\eta\{x: \rho(x)\}$
- Is (Definition) bankrupt? No!

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introductior

Two Ideas of Collection

terative Conception of Set

Iterative Conception of Proper Classes

Conclusion

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Naive Comprehension and Paradox 2

• There's also a naive notion of *set*.

NSC Let *xx* be some things. There is a set $\{xx\}$ such that for every object *a*, $a\eta xx$ iff *a* is among the *xx*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- It, too, leads to paradox:
- Let the *rr* be the sets that don't contain themselves.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introductior

Two Ideas of Collection

Iterative Conception of Set

terative Conception of Proper Classes

Naive Comprehension and Paradox 3

- The *naive* notion of set was *replaced* by the *iterative conception* of set.
- I will develop (Definition) into an *iterative conception of class*.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introductior

Two Ideas of Collection

Iterative Conception of Set

terative Conception of Proper Classes

Conclusion

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Section 3

Iterative Conception of Set

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

・ロト・四ト・日本・日本・日本・日本

Stages

- A set is *constituted* from its elements: It *presupposes* its elements.
- The sets come in *stages*:
 - 1. \emptyset presupposes nothing.
 - 2. $\{\emptyset\}$, as \emptyset is given.
 - α . Sets of sets of stage $< \alpha$.

Definition (Dependence) We say that x depends on y if y stands in the transitive closure of \in to x.

Definition Let x be a set.

 $rank(x) = sup\{rank(y) : x \text{ depends on } y\} + 1$

• We get:

. . .

SC Let α be a rank, and xx some objects of rank $< \alpha$. There is a set $\{xx\}$ such that for every object a $a \in \{xx\}$ iff a is among the xx. Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Constituency

"The *xx constitute* $\{xx\}$ "

- What does this mean?
- 1. The Kingdom of Norway is constituted from the Norwegians.
- 2. The meaning of '+' is constituted from the usage of this symbol.
- 3. This quadrangle is constituted from these two triangles.

Existence If the *yy* constitute *x* then *x* and the *yy* exist.
Uniqueness If the *yy* constitute *x*, and the *zz* constitute *x*, then the *yy* are the *zz*. Similarly, if the *yy* constitute *x*, and the *yy* constitute *y*, then *x* = *y*.
Non-Circularity There is no sequence of objects *x*₁,...,*x_n* such that for every *i* < *n*, *x_{i+1}* is among the objects which constitute *x_i*, and *x*₁ = *x_n*.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introductior

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Section 4

Iterative Conception of Proper Classes

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

<日 > < 同 > < 目 > < 目 > < 目 > の Q (~)

Truths

- (Definition) motivates a change of perspective:
- Away from *objects*, to *true propositions*.
- All I assume of a proposition is:
 - Abstract
 - Structured and finely individuated
- I'll write '[A]' for the proposition that A.
 - ▶ I'll call $[x \in y]$ and logical functions of it '∈-propositions',
 - $[x\eta y]$ and logical functions an ' η -proposition'.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

・ロト・日本・日本・日本・日本・日本

From Definition to Truths

- Which classes are there?
- (Definition): If Φa and $[\Phi a]$ safe then $a\eta\{x : \Phi(x)\}$, hence $\exists y(a\eta y)$.
- Which propositions hold and are safe?

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Predicative Classes

- Which propositions hold and are safe?
- All truths of set-theory!
- There are the classes $\{x : \Phi x\}$, Φ set-theoretic.
- Old News: We already know predicative class theory.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

Impredicative Classes

- Which η -propositions hold and are safe?
- "Does $[a\eta\{x: \Phi x\}]$ hold?" \Rightarrow "Does $[\Phi a]$ hold?"
- $[\Phi a]$ may itself be an η -proposition.
- η -propositions depend on η -propositions.
- As *Platonists*, how do we explicate this?

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

・ロト・日本・日本・日本・日本・日本

Bolzanian Grounding 1

 Propositions stand in the relation of ground and consequence ('⊲').

Grounding is constituency for the definitional idea.

- 1. [The angles of a triangle add up to 180 degrees] ⊲ [The angles of a quadrangle add up to 360 degrees]. (WL §162)
- [God is perfect] ⊲ [The actual world is the best of all worlds]. (WL §201)
 - This relation is *not* epistemic (WL §198), *not* causal (WL §201) and *stricter* than logical consequence (WL §200).

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Bolzanian Grounding 2

Faktivität If $A_0, A_1, ... \lhd B_0, B_1, ...,$ then $A_0, A_1, ..., B_0, B_1$ (WL §203)

Uniqueness If $\Gamma \lhd \Delta$ and $E \lhd \Delta$ then $\Gamma = E$. Similarly, if $\Gamma \lhd \Delta$ and $\Gamma \lhd E$ then $\Delta = E$. (WL §206)

Non-Circularity There is no chain $\Gamma_0, ..., \Gamma_n$ such that for every $i < n, \Gamma_i$ ground Γ_{i+1} and there's an *A* that is among the Γ_0 as well as among the Γ_n . (WL §§204, 218)

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Proper Classes and Grounding

- Why $a\eta\{x: \Phi x\}$?
- Because a is a Φ .
- $[\Phi a] \lhd [a\eta \{x : \Phi x\}]$
- I remain neutral as to how grounding interacts with the connectives.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

・ロト・日本・日本・日本・日本・日本

Putting Grounding to Use

 Bolzanian grounding allows to to *order* the eta-propositions without compromising our *platonism*.

Definition (Dependence) We say that *A depend* on *B* if *B* is among some propositions that stand in the transitive closure of grounding to *A*. (WL §217) Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

Iterative Conception of Proper Classes 1

(Basic Truths) For every logical or set-theoretic truth *A* there are no eta-propositions Γ such that $\Gamma \lhd A$.

Corollary Dependence is well-founded on the \in - and η -propositions.

Definition (Rank) Let A be a truth. rank(A)=sup{rank(B) : A depends on B}+1

- Set-theoretic truths have rank 0.
- Truths $[a\eta\{x : \Phi(x)\}], \{x : \Phi x\}$ predicative, have rank 1.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Iterative Conception of Proper Classes 2

Definition (Grounded Truths) A is grounded iff it has a rank.

CC For every condition Φ and every object *a*. If $[\Phi a]$ is grounded, then: $a\eta\{x : \Phi(x)\}$ just in case $\Phi(a)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

terative Conception of Set

Iterative Conception of Proper Classes

Examples

(Universal Class) [{x : x = x} = {x : x = x}] does not depend on any η-proposition. It is a *grounded* truth.

$${x: x = x}\eta{x: x = x}$$
 iff ${x: x = x} = {x: x = x}$

(Russell) Assume

(**R**) $[\neg \{x : \neg x\eta x\}\eta \{x : \neg x\eta x\}]$

has rank α . (R) depends on itself. Hence (R) must have rank $\beta < \alpha$. Contradiction.

The Russell-proposition is ungrounded.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Section 5

Conclusion

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Wrapping Up

- A new response to the class-theoretic paradoxes.
- 1. The iterative conception of *set* bases on the primitive relation of *constituency*.
- 2. I take (Definition) seriously. It's about facts, not objects.
 - Bolzanian grounding is constituency for classes.
 - We obtain a *cumulative hierarchy* of class-theoretic truths.

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

terative Conception of Proper Classes

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Birkbeck, London

Oslo, September 21st 2012

European Research Council

Putting *Abfolge* to Use: An Iterative Conception of Classes

Jönne Speck

Introduction

Two Ideas of Collection

Iterative Conception of Set

Iterative Conception of Proper Classes

Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●