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1. Field gave a new argument against Excluded Middle.

2. He explained shortcomings of the logic proposed in his

publications and suggested an alternative: Łℵ0 � pUq.
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One Challenge and One Suggestion

1. Today’s absurdity principles conflict with Field’s probabilistic

understanding of rejection.

2. We know more about Łℵ0 � pUq than suggested in the talk.
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Field’s Argument from Rejection

� Field: for consistent naive truth, restrict Excluded Middle.
� He has argued from four principles of rejection.

R1 Rejectpφ^ Txφyq

R2 Rejectp φ^ Txφyq

R3 Rejectpφq^Rejectpψq Ñ Rejectpφ_ ψq

R4 Rejectpφ^ ψq ^ pφØ ψq Ñ Rejectpφq^Rejectpψq

1. λØ  Txλy

2. Rejectpλq^Rejectp Txλyq R1 + R4

3. Rejectpλ_ Txλyq R3

4. Rejectpλ_ λq Naivety of ‘T’

� ‘... we should reject the application of the law of the excluded

middle to the Liar sentence’ (slide 7)
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. . . doesn’t square well with Classical Probability . . .

� Rejecting φ is to have a low degree of belief in φ [Field, 2005, p.
26][Field, 2008, p. 74].

� Acceptpφq :Ø Ppφq ¡ τ

� Rejectpφq :Ø Ppφq   p1� τq

� If Ppφq � Pp φq � 1 then Rejectpφq iff Acceptp φq.

� Acceptpλq iff Acceptp Txλyq iff RejectpTxλyq iff Rejectpλq.

� Rejectpλ_ λq iff Accept pλ_ λq iff Acceptp λ^ λq iff

As(λ) iff Acceptpλ_ λq
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. . . nor with any other

� Field has noticed this [Field, 2005, p. 26], [Field, 2008, pp. 74n]

� His response: restrict classical probability theory.

� Ppλq � Pp λq   1

Ppλq � Pp λq ¡ τ Acceptpλ_ λq

Ppλq � Pp λq   p1� τq Rejectpλ_ λq

p1� τq   Ppλq � Pp λq   τ Neither
� The degree-of-belief account of rejection either begs the question

against Excluded Middle, or refutes his argument.
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Suggestion

� Don’t reject LEM, keep silent.

� p1� τq   Ppλ_ λq   τ

S1 Silentpφ^ Txφyq

S3 Silentpφq^Silentpψq ÑSilentpφ_ ψq

S4 Silentpφ^ ψq ^ pφØ ψq ÑSilentpφq^Silentpψq

ñ Silentpλ_ λq

� ‘Paracompleteness runs deep’ [Field, 2008, p. 72]
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The Offer from Field’s Book

� Field constructs a revision sequence of Kripke fixed point

models.

� This allows him to define a stronger conditionalÑ.
� φÑ φ

� φØ Txφy

� determinately φ iff φ^ pφÑ  φq

� Any λα Ø  DD . . .Dlooomooon

α�

λα is of value 1
2 but

vp D DD . . .Dlooomooon

α�

λαq � 1
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Restricted Quantification

� Ñ provides restricted universal quantification
� ‘Every PA-theorem is true’: @xpBewPApxq Ñ Txq

� However, Field’sÑ does not give

EASY @xφpxq Ñ @pxqpφpxq Ñ ψpxqq

HARD Dxpx � tq ^ φptq ( @xpφpxq Ñ ψpxqq Ñ ψptq
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Stronger, but not Quite Łukasiewicz

� Łukasiewicz ℵ0-valued logic gives both (EASY) and (HARD). . .

� . . . but is inconsistent with naive truth.

� Field conjectures (slide 23):

U ppφÑ ψq Ñ ψq Ñ pφ_ ψq

Łℵ0 � U, if consistent, ‘probably . . . the best possible naive

truth theory’

� Can’t we get any closer?
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BCK Logic

� In the 1950s, C.A. Meredith proposed

B pφÑ ψq Ñ ppψ Ñ χq Ñ pφÑ χqq

C φÑ ppφÑ ψq Ñ ψq = (H) as a law

K φÑ pψ Ñ φq = Weakening = (E)

� BCK validates (EASY) and (HARD) out of the box.

� (HARD) even in the form of a law.

� BCK = Łℵ0 � U [Priest, 2008, 11.5.3-9]
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BCK Algebras

� For vpφÑ ψq � vpφq ñ vpψq BCK is sound and complete wrt

algebras xX, 1,ñy such that

Id If x ñ y � 1 and y ñ x � 1 then x � y

Ba px ñ yq ñ ppy ñ zq ñ px ñ zqq � 1

Ca x ñ ppx ñ yq ñ yq � 1

Ka x ñ py ñ xq � 1

� Partial order x ¤ y :Ø x ñ y � 1
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Naive Truth with BCK?

� Field (slide 23):

It’s natural to hope that if we drop (U), we can get a naive

truth theory in the weakened logic.

� Alas, for φ_ ψ :Ø  φÑ ψ BCK proves φ_ φ.
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Naive Truth with BCK Conditional?

� Nonetheless, BCK is a promising starting point: addÑ to
paracomplete Kleene logic.

� Naive set theory has been developed within BCK

[Grišin, 1982, Bunder and daCosta, 1986]

� My suggestion:

Let’s build on the rich BCK literature to promote

paracomplete truth theory.

Jönne Speck Response to Field



Truth and Rejection
Conditionals and Restricted Quantification

A BCK-Kleene Algebra

� Bounded commutative BCK algebras are distributive lattices

[Hoo, 2001].

xt0, u, 1u, 1,ñy

� Assume 0 ñ y � 1 (0 is the lower bound) and

T px ñ yq ñ y � py ñ xq ñ x

� x� � 0 ñ x, x\ y � x� ñ y

� Let vp φq � vpφq� and vpφ_ ψq � vpφq \ vpψq

� Do we get Strong Kleene logic for  and _?
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Kripke Fixed Point Model

� The existence of fixed point models follows from the

Knaster-Tarski-theorem for coherent complete partially ordered

sets (‘ccpo’).
� The Kleene value space xt0, u, 1u,¤Sy is a

ccpo: 1 0

u

__>>>>>>>

??�������

.

� The corresponding valuations v : Lat ÞÑ t0, u, 1u with v ¤V v1 iff

for every Lat-sentence φ, vpφq ¤S v1pφq make up a ccpo V , too

[Visser, 2004, lemma 7].
� Strong Kleene logic for LatzLa-sentences provides a monotone1

operator K : V ÞÑ V
1See appendix ?? Jönne Speck Response to Field
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The Kripke Jump

� Let mpφq be the value of the La-sentence φ in the standard

model.

K1 Kpvqpφq � mpφq for φ PSenta

K2 KpvqpTxψyq � vpψq

K3 Kpvqp ψq � 1� Kpvqpψq

K4 Kpvqpψ _ χq � maxtKpvqpψq,Kpvqpχqu

K5 Kpvqp@xψq �mintKpvqpψpt{xqq|t closed termu2

� There is a ccpo of fixed points vf � Kpvf q.

� Especially, there’s a least fixed point.
2Since we deal with arithmetic, it can be assumed that every object has a name in

the language.
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Adding the BCK Conditional

� It’s still a BCK algebra.

� v�f pφÑ ψq � vpφq ñ vpψq

� v�f pEq � v�f pφÑ pψ Ñ φqq � vpφq ñ pvpψq Ñ vpφqq Ka� 1

� v�f pHlawq � v�f pφÑ ppφÑ ψq Ñ ψqq � pvpφq ñ ppvpφq ñ

vpψqq ñ vpψqqq Ca� 1
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Summary

1. How does Field’s new argument from rejection principles square

with his probabilistic account of rejection?

2. Let’s develop paracomplete truth with a BCK-conditional.
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