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1 Introduction

Fine (2005) constructs models of a class theory closed under Boolean operations. He

requires these models to be regular. In this paper, I argue that this requirement can be

lifted. I propose and defend a generalization of Fine’s construction: models of irregular

but grounded classes.

The paper has the following structure. First, I introduce to Fine’s class theory. I will

explain the intuitive idea behind it (§2) as well as its formal implementation (3. Then,

I explain the requirement of regularity that Fine imposes on the models (§4).

Fine takes regularity to ensure that the relation ‘. . . is defined in terms of . . . ’ is

well-founded on the classes. However, as I will argue in section 5, definitions of irregular

models are no less well-founded.

In section 6, I will explore the philosophical dimension of these technical findings. I

will argue that the class definitions of irregular models, too, are well-founded because

their membership relation is grounded in ordinary set-theory.

2 Fine’s Theory of Classes (Old)

Usually, when her goal is to extend ordinary set theory ZFC by classes, the theorist

starts from the sets, and then builds up the classes, going from some objects to the class

that they are the members of. In other words, she uses the notion of membership in

order to obtain the realm of classes. Fine takes the opposite approach. He starts from

the classes, and then, step by step, he defines the membership relation, on the basis of

a fixed domain of classes.
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The idea behind Fine’s construction can be given by the following picture. Imagine a

dialogue between God and archangel Gabriel. Assume that God knows all the classes and

Gabriel only the sets. Gabriel presents to God a concept and asks for the corresponding

class. That is, he asks for the class of everything that falls under that concept.

Let me use, as Fine does, the metaphor of classes as boxes. When Gabriel submits

a concept, say that of not being the number 4, God opens that box which contains

everything that is not 4. This is how Gabriel gets to know the complement of 4, which

is a proper class.

But Gabriel can only give a concept that he already understands. And since, by

assumption, he does not yet know the classes, he can only give concepts formulated in

terms of the ordinary set-theoretic elementhood relation. So God and Gabriel go through

all these concepts. Being 4, not being 4, being an ordinal, not being an ordinal, etc.

At the end, Gabriel has got to know a number of proper classes: the complement of 4,

the class of all ordinals, the class of all sets that aren’t an ordinal, etc. More precisely,

what Gabriel has learned is that certain classes have such and such members. His

concept of membership has extended. But he does not yet know classes that correspond

to concepts formulated in terms of proper classes.

So God and Gabriel do a second round, in which Gabriel now is allowed to use his

newly acquired knowledge of proper classes. This means, Gabriel now submits to God

concepts that are formulated in terms of the extended membership relation. Again, God

opens the corresponding boxes, and new classes are added to Gabriel’s understanding

of membership. They iterate these rounds and extend the membership relation step by

step. Finally, the universe of classes is exhausted and every class has been added to the

membership relation. At this final stage, Gabriel has fully understood what it means to

be the member of a class.

3 Formal Construction (Draft)

This intuitive picture can be turned into the definition of a model of class-theory whose

membership relation is obtained from ordinary set-theoretic elementhood in a stepwise

manner analogous to Gabriel’s exchange with God.1

God reveals the members of a class when Gabriel submits the corresponding concept.

This idea is formalized by a function ∆ that maps the urelemente (which represent the

1For details see [Fine, 2005, §3], [Speck, 2011, §1.2].
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classes) to predicates.

Definition 1. ∆pcq � φα iff µpcq � xα, βy

The starting point of Fine’s construction is a model of set theory with urelemente.

These urelemente represent the classes before their members have been determined —

first order objects without elements. At least, without members in the sense of the set-

theoretic elementhood relation. These objects are not in the range of the membership

relation.

Definition 2. M0 � xVκpCq, e0y.

The membership relation e0 is the ordinary set-theoretic relation such that x e0 y if

x is an element of the set y. Therefore, no class yet is in the range of e0. However, in

terms of e0 many concepts can be expressed that define proper classes. For example,

the predicate x R t4u defines the complement of 4, if ‘P’ is interpreted as e0. Some

urelement c, now, is mapped to this predicate (∆pcq � ‘x R t4u’). This c represents

the complement of 4, and the membership relation is extendend by pairs xx, cy, where x

satisfies ‘x R 4’, as interpreted by e0 (x P |‘x R 4’|0).
2 The first class-membership relation

e1 is obtained by adding to the range of e0 the urelemente c such that ∆pcq defines a

proper class if interpreted in the ground model of set theory, just as Gabriel first extends

his understanding of membership to classes that he can define from his knowledge of set

theory. Formally, x e1 y if x e0 y of x P |∆pyq|0. Generally, at any successor stage α

a new membership relation eα�1 is defined whose range extends its predecessor eα by

urelemente c such that |∆pcq|α defines a proper class.3

Definition 3. For c, d P C, c ! d iff µpcq � xα, βy, µpdq � xγ, δy and β   δ, or β �

δ and α   γ

Definition 4. The ground model M0 has been defined (def. 2). Given Mα let

Mα�1 �xVκpCq, eα�1y where x eα�1 y iff x eα y, or x P |∆pyq|α

and for any γ ¤ α there is no c P C such that c ! y and |∆pyq|α � |∆pcq|γ .

Mγ �xVκpCq, eλy with eλ �
¤
β γ

eβ, for limit ordinals γ

2Recall that a membership relation can be viewed as a collection of ordered pairs xx, yy such that x is

a member of y.
3At limit stages, the new membership relation is the union of all preceding ones.
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In the following, I will talk of ‘membership sequences’ only in the sense of this defini-

tion, and will mean by ‘membership relation’ some eα as it occurs in such a sequence of

models Mα.

Proposition 5. The classes of the models Mα are extensional. For any c, d P C and

any α, if c, d are ascribed members (Dxpx eα c^ x eα dq) then

@xpx eα cØ x eα dq Ñ c � d

Fine defines the order of a class as the stage where its members are revealed [p. 554].

Since c enters the range of eα�1 just in case that |∆pcq|α � H, we can alternatively set

orderpcq � mintα� 1 : |∆pcq|α � Hu

Thus, to use the picture again, the order of a class is the stage when the box has been

opened and its content been determined.

The range of the membership relation increases strictly. More generally,

Proposition 6. for any membership sequence, the range of the membership relation

increases monotonically, in the sense that for every α, β   λ,

If rnpeαq � rnpeβq then rnpeα�1q � rnpeβ�1q

As a consequence, the construction eventually closes off — there is a terminal stage λ

whose model Mλ is a fixed point. Every class definable in Mλ is already in the range of

its membership relation eλ.

The model Mλ corresponds to the final round of God and Gabriel’s dialogue (??), at

the end of which Gabriel has fully understood class membership. How large this terminal

ordinal λ really is depends on how quickly the urelemente C are used up. This again is

a matter of which predicates φpxq the classes are mapped to, and therefore depends on

∆.

Fine, however, prefers to fix the terminal ordinal directly. For this, he introduces the

notion of class-inaccessibility. λ is class-inaccessible if there is no ordinal α   λ such

that for any membership sequence Mα defines a well-ordering of order-type λ (if there

is such an ordinal α, λ is accessible).
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4 Regularity

Eventually, Fine focuses on a specific family of models.

I wish to propose the regular terminal models Mλ, for lambda class- inac-

cessible, as the intended models for the theory of classes. [Fine, 2005, p.

557]

A model is regular if it is defined in terms of a regular assignment ∆. The regularity of

∆, again, is defined in terms of the relation ‘. . . occurs in the predicate that ∆ maps to

. . . ’, or just ‘. . . occurs in ∆p...q’ Now,

Definition 7. (Regularity) ∆ is regular if for every c P C, the relation ‘... occurs in

∆p...q’ is well-founded on the urelemente C.4

Although Fine does not make this connection explicit, his Regularity requirement

follows from a general norm of real definition that he develops in the final section of his

paper.

(Norm) Definitions must be well-founded. More precisely, the relation ‘... is used to

define ...’ is well-founded on the objects defined.

When applied to Fine’s class-theory, (Norm) becomes his regularity requirement.

First, notice that it is assignments ∆ that fix how the classes are defined. Accord-

ingly, in this special case (Norm) becomes a requirement on ∆. For some such ∆, now,

the relation ‘. . . is used to define . . . ’ is just the relation ‘. . . occurs in ∆p...q’. Finally,

the objects defined are the urelemente in C. In sum, ∆ satisfies (Norm) if the relation

‘. . . occurs in ∆p...q’ is well-founded on C; that is, if and only if it is regular.

5 A Case for Irregular Assignments

5.1 Irregular Delta don’t lead to ill-founded Class Definitions

Having described a novel model theory for impredicative classes (§3), Fine restricts his

attention to regular models. He allows only regular assignments ∆ to bijectively map

urelemente onto predicates. Fine does so in order to rule out ill-founded definitions.

4Recall that a relation R is well-founded on a set A if every non-empty subset B of A has an element

to which no b P B bears R.
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And surely, if the urelemente in C really are assigned formulae in a regular manner,

none will ever represent a class of ill-founded definition. Regularity ensures well-founded

class definitions, so to speak, by brute force. But the question remains, is regularity

necessary?

Consider a ∆i that maps c P C to ‘x � d’ and d P C to ‘x � c’. By the extensionality

of Fine’s classes (proposition 5 above), ‘x � d’ is equivalent to ‘@ypy P x Ø y P dq’.

Therefore, at any stage α where d is not in the range of the membership relation,

|∆ipcq|α is empty, such that c is not added to the range of eα. In other words, c will be

ascribed members only when x P d is satisfied by some objects of VκpCq. However, for d

to enter rn(eβ) for β ¤ α, c would have entered the range of the membership relation first

— which contradicts the assumption that α   β. The same reasoning applies to ∆ipdq;

hence, neither c nor d ever enter the range. c and d do not come to represent classes;

they remain what they are: urelemente. Generally, no urelement will enter the range

of the membership relation if it is assigned a formula that presupposes an individual to

have members that has not entered the range before.

Proposition 8. For every ∆ and every c P C, if Dα: orderpcq � α then @d P C, if

∆pcq (‘x P d’ then orderpdq  orderpcq.

What does this mean? On the one hand, it means that whenever we have an irregular

assignment of urelemente to predicates, some urelemente will never be interpreted as

classes. Irregular assignments ∆ yield models of class theory with urelemente.

On the other hand, it means that although irregular assignments ∆i allow for ill-

founded dependence chains in Fine’s sense, they do not lead to ill-founded class defini-

tions. An ill-founded concept fails to define any class.

Let me sum up my case for irregular assignments ∆. First, notice that the goal

is merely to show that every class definition is well-founded. Further, recall that the

urelemente are only interpreted as classes when they enter the range of the membership

relation. To see why Regularity is an unnecessary restriction it now suffices to note that

urelemente whose corresponding predicates involve terms not yet interpreted as classes

simply do not enter the range of membership. Hence, these objects that correspond to ill-

founded concepts aren’t classes. Consequently, there are no ill-founded class definitions.
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5.2 How Well-Founded Definitions are Ensured

Contrary to Fine’s suggestions, irregular assignments do not give rise to ill-founded class

definitions. This finding asks for closer investigation. If not regularity, what else ensures

the classes of Fine’s theory to be defined in their well-founded manner?

First, consider again Fine’s example of an irregular assignment ∆i such that ∆ipcq is

‘x � d’ and ∆ipdq �‘x � c’. If the urelemente were interpreted as classes all at once,

this configuration would cause trouble. However, this approach is doomed anyway, as it

would likewise require the Russell concept ‘x R x’ to fix a class. and when he constructs

his models, Fine carefully avoids such calamity. How does he do it? He defines his classes

step by step. More precisely, the class membership relation is developed in stages; and

an urelement is interpreted as a class at stage α � 1 only if the predicate that it is

assigned to is the first to carve out a certain region of the universe (definition 4 above}.

In particular, c enters the range of the membership relation eα�1 just in case ∆pcq is

satisfied in the structure xVκpCq, eαy. But this cannot happen at any stage, as it requires

d to have been interpreted as a class before.

The reason why urelemente of ill-founded assignment are not interpreted as classes of

ill-founded definition, is that at each stage of the construction, every class that comes

to be defined, is defined in terms of earlier stages.

The assignment ∆ of urelemente onto predicates is the backbone of Fine’s construction.

In order to rule out ill-founded class definitions he requires these functions to be regular.

However, irregular assignments do not lead to ill-founded class definitions either. I

conclude that Fine’s regularity requirement is an unnecessary constraint on his model

theory.

6 Groundedness

The preceding may seem a merely technical study. It is not.

In the remainder of this paper I will attempt to uncover the metaphysical principle

that accounts for the success of Fine’s model theory.

Moreover, it underlies the well-foundedness norm for definitions. Thus, it suggests an

explanation why Fine came to impose his regularity constrain.

It is the principle of groundedness.
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6.1 The Grounding Character of Fine’s Model-Theory

As the previous section has shown, irregular assignments do not give rise to ill-founded

class definitions. The reason is the classes are defined in stages, and any class is defined

only if the defining formula is satisfied at the previous stage. This desirable feature of

definition 4 is no happy accident or artefact of the formal set up. There is a general

principle at work. The well-founded class definitions of the models Mα is just another

chapter of a success story in 20th century logic. It is the story of groundedness.

Maybe the best known example of groundedness is the cumulative hierarchy of sets

which provides axiomatic set theory with independent justification, pace Quine.

Herzberger first applied the groundedness idea to semantics (1970); but only Kripke

(1975) gave the first grounded truth theory. Recently, Hannes Leitgeb proposed a dif-

ferent approach to grounded truth (2005).

Nonetheless, all these are cases of the following general pattern.5 In a nutshell, some

objects S are grounded in a collectionG if you arrive at S fromG by applying successively

some operation γ of the right, grounding kind. This operation and its iteration are two

distinct aspects of the notion of groundedness. In order to spell it out I will consider

these aspects separately, explaining first the grounding character of γ, and then say

something more about its iteration.

You may think of γpGq as a construction from G, but only metaphorically. The

proposed account of groundedness is meant to be thoroughly realist. Groundedness, as

I think of it, is an objective property. Objects are grounded in virtue of how the world

is like, independently of our constructive abilities.6 Consequently, there are no limits as

to how γpGq is computed but for one crucial constraint: the only input is G.

However, the interesting collections of objects grounded in G are not obtained in a

single step. Instead, the operation γ is iterated. Once the objects γpGq are obtained, they

may be used themselves as input for γ. Thus, another collection γpγpGqq is generated,

which again is grounded in G; and so on. Notice that since the grounding operation is

iterated, some conception of ordinal number is built into the notion of groundedness.

This is the ‘step-by-step’ aspect of groundedness that I plays a central role in Fine’s

construction.

I do not think that while γ is iterated, the collections necessarily become bigger and

5Elsewhere, I develop a formal theory of groundedness [Speck, 2011].
6For the sake of readability, I will nonetheless make frequent use of construction talk; this will always

be merely metaphorical.
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bigger, or richer and richer. γpXq may well be just a fragment of X. Nonetheless, every

new collection obtained from applying γ is grounded in the starting point G. Especially,

S being grounded in G does not mean that no new collection γpSq � S could be obtained

from it (groundedness does not imply being a fixed point).

Since groundedness does not depend on any subject to carry out all the iterations,

there are no constraints as to how many times the operation is applied. Therefore, the

iteration of γ is continued beyond limit stages and the notion of ordinal numbers at work

in groundedness is fully transfinite.

In sum, a collection S is grounded in G if there is an operation γ such that, if you

start from G and iterate γ transfinitely often, whereby at each stage you only use what

the previous stage has given, you arrive at S.

Given this general account of groundedness, it is not difficult to see that Fine’s mem-

bership relations eα are grounded in ordinary set-theoretic elementhood. Let S be any

class membership relation, that is, a collection of pairs xx, yy, where x is a member of y.

The grounding operation γ simply maps class membership relations eα to eα�1 Formally,

for any collection R

γF pRq �

$&
%
eα�1 if R � eα for some α

R otherwise

Finally, let G be the elementhood relation of ordinal set theory — the collection of pairs

xx, yy, now for x being an element of the set y.

If starting from G, γF is iterated along the ordinals, one arrives at S. This is just

what makes S a membership relation in the sense of definition 4. Moreover, γF is an

operation of the right, grounding kind. It captures the definition 4 from section 3, and

there, eα�1 is defined only in terms of eα. Thus, γF pRq is obtained solely on the basis

of R. At each stage of the construction of S from G, nothing is presumed than what is

given from the previous stage. Class membership is grounded in set elementhood.

The previous section, showed that for irregular models Mα, too, the classes as repre-

sented by urelemente in the range of eα have well-founded definitions. Technically, this

is because the range of the membership relation is extended in a specific step by step

manner.

Now, the philosophical significance of this explanation becomes apparent. Regularity

is not needed to ensure well-founded class definitions since class membership is grounded

in set-theoretic elementhood.
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6.2 Well-Foundedness as a Groundedness Norm (Draft)

But what about the general well-foundedness norm on definitions?

Unfortunately, Fine does not argue for the well-foundedness requirement. He does not

explain why the ‘. . . defined in terms of . . . ’ relation should be well-founded.

But I think you can make the following case. My starting point is the eliminability

criterion for definitions: In other words, for every definition there is to be a way of

tracing it back to primitives.

On a closer look, however, it will turn out that this is just the case if the definition

is grounded in the primitves, grounded in the very sense in which class membership

relations are grounded in set membership.

Using the equivalent dependence description of groundedness (Yablo): S grounded in

G if there is a G-dependence relation R such that every R-path starting from S is finite.

The relation ‘. . . is defined in terms of . . . ’ is well-founded on objects D, given some

primitives P, iff Every objects in D is grounded in P.

That well-foundedness is a groundedness idea can also be seen in that Fine explains

the well-foundedness requirement as that any definition should ‘bottom out’ [Fine, 2005,

p. 568].

By way of motivation, you can also argue that historically, well-foundedness ideas

have been developed in close connection with the iterative conception of set (Mirimanoff,

Zermelo. . . ).
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